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Abstract

Constant Function Market Makers (CFMMs) are a family of automated market
makers that enable censorship-resistant decentralized exchange on public blockchains.
Arbitrage trades have been shown to align the prices reported by CFMMs with those of
external markets. These trades impose costs on Liquidity Providers (LPs) who supply
reserves to CFMMs. Trading fees have been proposed as a mechanism for compensating
LPs for arbitrage losses. However, large fees reduce the accuracy of the prices reported
by CFMMs and can cause reserves to deviate from desirable asset compositions. CFMM
designers are therefore faced with the problem of how to optimally select fees to attract
liquidity. We develop a framework for determining the value to LPs of supplying
liquidity to a CFMM with fees when the underlying process follows a general diffusion.
Focusing on a popular class of CFMMs which we call Geometric Mean Market Makers
(G3Ms), our approach also allows one to select optimal fees for maximizing LP value.
We illustrate our methodology by showing that an LP with mean-variance utility will
prefer a G3M over all alternative trading strategies as fees approach zero.

Introduction

Constant Function Market Makers (CFMMs) [2] are a family of automated market makers
that enable censorship-resistant decentralized exchange on public blockchains. In CFMMs,
Liquidity Providers (LPs) supply assets (reserves) to an on-chain smart contract. The smart
contract makes reserves available for swaps, executing a trade only if it preserves some func-
tion of reserves, known as ‘the invariant.’ For example, Uniswap [1] only permits trades
that preserve the product of reserves (the product of reserve quantities must be the same
before and after a trade). Similarly, Balancer only permits trades that preserve the weighted
geometric mean of reserves. LPs are entitled to a pro-rata share of the CFMM’s reserves,
as well as any trading fees that the CFMM collects. As of this writing, CFMMs have at-
tracted billions of dollars worth of reserves and trade over $1 Billion worth of cryptocurrency
daily [12]. The rapid growth in the value deposited in CFMMs has allowed these protocols to
regularly compete with established centralized exchanges on the basis of liquidity [6]. At the
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same time, this growth has raised questions of efficiency, including how to optimally utilize
reserves and how to select parameters for attracting liquidity and trading volume.

Under fairly general conditions, the prices reported by CFMMs have been shown to
closely track those of external, more liquid markets [2]. Because the price reported by a
CFMM is a function of reserves, this “oracle” property requires an arbitrageur to maximize
profit by adjusting reserves to align the CFMM’s price with that of the external market.
Because reserves are adjusted in response to price changes on the external market, the
asset composition that Liquidity Providers (LPs) are entitled to is continually rebalanced.
Protocols such as Balancer take advantage of this property to offer LPs payoffs that resemble
constant-mix portfolios [16]. While LPs may benefit from rebalancing their portfolio to a
target allocation, they also bear the cost of arbitrage transactions. In response, most CFMMs
charge fees for incoming trades. However, fees make arbitrage less profitable, leading to only
partial adjustment of reserves in response to price changes. This allows asset compositions
to stray further from their desired allocations and reduces the accuracy of the prices reported
by the CFMM. As a result, fees may in fact reduce the value LPs receive in certain cases.
Given these trade-offs, CFMM designers are faced with the problem of how to assess the
impact of fees on LP value and how to select optimal fees for attracting liquidity.

Our analysis focuses on Geometric Mean Market Makers (G3Ms), which include most
popular CFMMs used in practice, including Uniswap, Sushiswap and Balancer [1, 16]. G3Ms
require that the reserves of the CFMM before and after each trade must have the same
(weighted) geometric mean. As a by-product of arbitrage, the proportion of value deposited
in the constant-mean CFMM for a given asset closely tracks the weight applied to the asset
when calculating the weighted geometric mean [16]. This property resembles a constant-mix
portfolio and simplifies the analysis of Liquidity Provider (LP) returns. G3Ms allow us to
model weight dynamics directly in the presence of fees. It has recently been shown that G3Ms
can replicate a wide variety of trading strategies, including options payouts, using dynamic
weights [13]. Our analysis therefore extends naturally to a large class of LP payouts that
can be represented by G3Ms.

Prior work. Prior work on LP returns in CFMMs has primarily focused on the case where
no fees are charged. In [13], it is shown LPs in G3Ms with no fees underperform equivalent
constant-mix portfolios due to arbitrage. However, the case with fees is more involved as
path independence is typically not satisfied. This question was addressed in [18] for the case
of a Uniswap LP seeking to maximize the growth rate of wealth when the underlying price
process follows a geometric Brownian motion. This model assumes a particular functional
form of the fee and shows that LPs can generate positive geometric growth with any non-zero
fee provided that the mean and volatility are bounded in a suitable manner. The result holds
for the specific case where the objective of the LP is to maximize the expected logarithm
of reserve value when the underlying price process follows a geometric Brownian motion
with certain mean and volatility constants. Our approach extends this setting to general
diffusions and LP objective functions.

A separate line of work has applied conventional microstructure models to the problem of
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LP profitability, positing a game between LPs and informed traders to estimate profitability
conditions for Uniswap [5]. This framework is generalized to arbitrary CFMMs in [3], where
it is shown that the curvature of the CFMM’s trading function can be used to bound LP
profitability. Our results apply to the case where the trader has perfect information and
extracts risk-free profit at the expense of the LP. We show that there are general conditions
under which the effect of arbitrage on the LP’s value function approaches zero for small fees.

Optimal control and portfolio optimization. While constant-mix portfolios produce
excess growth due to rebalancing, no-fee G3Ms have been shown to divert this growth to
arbitrageurs in order to incentivize continual rebalancing [13]. While arbitrage losses are
limited by increasing the fee that the G3M charges, this also limits the amount of rebalancing
that arbitrageurs are incentivized to perform. We seek to formalize the impact of this trade-
off on the value LPs receive from the G3M.

The problem of optimal portfolio selection in continuous time is well-studied in financial
optimization, starting with the classical investment-consumption of Merton [17]. There are
numerous extensions to the classical model that incorporate the impact of proportional
transaction costs [7, 11, 15]. In this setting, it is shown that the optimal investment policy
involves a no-trade region around the optimal portfolio weight [9, 8, 10]. In a G3M, an
LP does not have direct control over reserves and relies on an arbitrageur for rebalancing
reserves to the target asset proportions. It is shown in [4] that the arbitrageur takes no
action inside a no-arbitrage interval around the desired weight. However, the cost to the LP
at the boundary is not proportional to the dollar value of rebalancing required.

The passive nature of LP rebalancing and non-proportional costs complicate the prob-
lem of optimal portfolio strategies for G3Ms. Classical rebalancing [15] assumes that the
portfolio holder actively trades to adjust their portfolio weights. Unlike traditional portfolio
optimization, G3M arbitrageurs adjust the portfolio with the aim of extracting a profit at the
expense of LPs. In this work, we provide a solution to this problem by explicitly modeling
the arbitrage costs incurred at the boundary of the no-trade region for different levels of the
fee. Our approach is inspired by the stochastic control problems used in traditional portfolio
optimization. These methods are often used in reinforcement learning, portfolio analysis,
and recently in decentralized finance (DeFi) [14].

Summary. We study the value to LPs of contributing capital to a G3M with fees. We
consider the dynamics of the portfolio proportions as a function of time and fees assuming
arbitrageurs trade against the CFMM to maximize profit. We show that the proportion
of G3M value held in a given asset fluctuates freely within an interval where arbitrage is
unprofitable. If the state variable exits this interval, an arbitrage opportunity arises to
return it a point in the interior of the interval. We explicitly calculate the cost of this
adjustment and show that it vanishes to first order when the state process has contiunous
sample paths. The observation allows one to compute the value to the LP for a given choice
of fee by solving a differential equation subject to two conditions that hold at the boundary of
the no-arbitrage interval. We illustrate this approach for the specific example of maximizing
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mean-variance utility for a geometric Brownian motion and demonstrate how to optimize
the resulting value.

1 Problem description

In the arbitrage game, we have two players, each of whom trades in a two-asset economy:
the liquidity provider, who is interested in minimizing some penalty function depending on
the portfolio weights and an arbitrageur who trades against the liquidity provider’s assets
(and therefore, as a side effect, changes the portfolio weight).

Penalty function. We will define the penalty function φ : R → R∪{+∞} which depends
on the portfolio weight w ∈ [0, 1] for a given coin. The penalty function maps the weight to
a liquidity provider’s loss; i.e., we can view the function φ as the ‘tracking error’ common
in the control literature. We will assume that φ has a minimizer w! ∈ [0, 1] such that
φ(w!) ≤ φ(w) for all w ∈ [0, 1].

Portfolio weight dynamics. The portfolio weight is, in general, a stochastic process that
evolves in time, which we will write as wt ∈ [0, 1] at time t. We will assume a discretization in
time, with steps of size h > 0 and later recover continuous results by taking the appropriate
limits, such that t = 0, h, 2h, . . . . In this case, we will assume a basic model with increments
given by

ξt(w, h) = a(w)h+ b(w)εt
√
h, t = 0, h, . . . ,

where εt ∼ {±1} with equal probability. (For example, if a(w) = 0 and b(w) = 1 for any w,

then as h ↓ 0 we have that
!τ/h

n=1 ξnh converges weakly to a standard Brownian motion over
time τ .) Then, the dynamics of the weights will be given by some function F : R×R → R:

wt+h = F (wt, ξt(wt, h)), t = 0, h, . . . ,

where F is a function that models the arbitrage dynamics; i.e., the arbitrageur sees a change
in the portfolio weight of ξt and performs arbitrage which results in some new weight wt+h.
We will often abuse notation slightly by writing ξt instead of ξt(wt, h) to improve readability.

As a side note, we will be very informal regarding different types of convergence in the
presentation and will freely switch expectations, limits, and derivatives, along with assuming
that all functions are ‘nice enough.’ While we will mostly work with the discrete approxima-
tions, some limits taken at the end will require justification—a reader familiar with stochastic
processes and basic analysis should be able to insert the corresponding theorems as necessary,
but we will not discuss them further.

Arbitrage loss and total expected loss. By definition, the arbitrageur is guaranteed
nonnegative profit at every time t by exploiting the change in portfolio weights from time
t to t + h. We can (conversely) view this as a penalty incurred by the LP which we will
call the adjustment cost, defined by a nonnegative function C : R × R → R+. A simple
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interpretation for C(wt, ξt) ≥ 0 is that it is the cost at time t, incurred by the LP, for
adjusting the would-be portfolio weights wt + ξt to some different weight wt+h.

This lets us write the expected loss for a liquidity provider, starting at weight w ∈ [0, 1]:

J(w) = E

" ∞#

n=0

e−nhr(φ(wnh)h+ C(wnh, ξnh))

$$$$ w0 = w

%
, (1)

where wt+h = F (wt, ξt). Here, r is the continuous discounting rate, such that e−rt is the
amount discounted at time t.

A (tight) lower bound. A simple lower bound on the expected loss J comes from the
fact that φ(wnh) ≥ φ(w!), by definition of φ(w!), and C(wnh, ξnh) ≥ 0 by definition of the
adjustment cost C, which implies that the expected loss is bounded from below by:

J(w) ≥
∞#

n=0

e−nhrφ(w!)h.

If φ is normalized such that φ(w!) = 0 (this can be done without loss of generality by
replacing φ(w) with φ(w)− φ(w!)), this simplifies to:

J(w) ≥ 0.

The remainder of the paper shows that, in fact, this simple bound becomes asymptotically
tight as the fees approach, but do not equal, zero. (We will see soon how such fees connect
to the problem.) This would immediately imply that the liquidity provider’s losses are
minimized by reducing the fees as much as possible, while ensuring they are not zero.

No-fee interval. In general, CFMMs have a no-fee interval (which is a function of the fees)
where no possible weight adjustment is profitable for arbitrageurs [4, 2]. For most CFMMs,
and, more specifically, for the G3Ms we study here, the no-fee interval [wD, wU ] ⊆ [0, 1] has
nonempty interior when the fee is nonzero; i.e., wD < wU . This condition implies that, if
the portfolio weight wt lies in the interior of the interval, any vanishingly small change will
not be adjusted and incurs no losses. More formally, if wD < wt < wU , then

wt+h = F (wt, ξt) = wt + ξt and C(wt, ξt) = 0, (2)

for all h small enough, since ξt ∼ O(h1/2) by definition. We will show this is true for all
G3Ms in §2.

Differential equation limit. While (1) is a complete description of our problem, it is
in general not easy to analyze directly. On the other hand, in a similar way to dynamic
programming, we can write J(wt) in terms of the current cost at time t plus a discounted
expectation of J(wt+h) given wt:

J(w) = φ(w)h+ E[C(w, ξt) | wt = w] + e−rh E[J(wt+h) | wt = w].
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By rearranging and dividing both sides by h, we find that

e−rh E

&
J(wt+h)− J(w)

h

$$$$ wt = w

'
+ φ(w)

+
E[C(w, ξt) | wt = w]

h
− 1− e−rh

h
J(w) = 0. (3)

Note that, if w lies in the interior of the no-arbitrage integral, wD < w < wU , then the limit
as h ↓ 0 implies that C(w, ξt)/h = 0, since ξt ↓ 0 and C(w, ξt) = 0 for all ξt small enough,
from (2). Similarly, since wt+h = wt + ξt for all ξt small enough, we have

lim
h↓0

E

&
J(wt+h)− J(w)

h

$$$$ wt = w

'
= a(w)J ′(w) +

b(w)2

2
J ′′(w),

which follows from Taylor expanding J(wt+h) = J(w+ξt) into its linear and quadratic terms,
as ξt is on the order of h1/2, and taking the corresponding expectation. This means that the
final limit of (3) as h ↓ 0, is the following differential equation:

a(w)J ′(w) +
b2(w)

2
J ′′(w) + φ(w)− rJ(w) = 0, (4)

whenever wD < w < wU . In order to solve this differential equation, we will also need
appropriate boundary conditions which will depend on the specifics of the CFMM we are
considering. In our case, we will show that

J ′(wD) = J ′(wU) = 0, (5)

is satisfied.

2 Fees for G3Ms

In this section, we will provide a specific application of the framework provided in §1 in order
to show that a G3M with appropriately chosen weights will always have an optimal fee that
is as small as possible without being zero.

Constant function market makers. A constant function market maker is defined by its
reserves Rα(t) of coin α and Rβ(t) of coin β at time t. Traders can trade with the CFMM
(and therefore liquidity providers’ funds) by proposing a trade ∆α ≥ 0 of coin α and ∆β ≤ 0
of coin β to the CFMM. The trade is accepted if the CFMM’s trading function defined by
ψ : R+ ×R+ → R satisfies

ψ(Rα(t) + γ2∆α, Rβ(t) +∆β) = ψ(Rα(t), Rβ(t)).

(i.e., it is ‘kept constant.’) Here (1− γ) is the fee, which must satisfy 0 < γ ≤ 1. If, instead,
we wish to trade ∆α ≤ 0 for ∆β ≥ 0, we would instead switch the fee to the incoming coin
β, i.e., the trade is accepted if

ψ(Rα(t) +∆α, Rβ(t) + γ1∆β) = ψ(Rα(t), Rβ(t)).
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If the trade (∆α,∆β) satisfies either equation, then the CFMM takes ∆α from the trader (if
∆α ≥ 0, otherwise it pays out ∆α) and pays out ∆β ≥ 0 (as before), updating its reserves to

Rα(t+ h) = Rα(t) +∆α and Rβ(t+ h) = Rβ(t) +∆β.

For more information on CFMMs see, e.g., [2].
In the special case of G3Ms, which is the case we consider in the remainder of the paper,

we have the specific trading function:

ψ(Rα, Rβ) = R1−θ
α Rθ

β,

where 0 < θ < 1 is called the weight parameter. We derive explicit formulas for wU , wD and
the adjustment costs in this case in Appendix §A.

Portfolio value and weight. The definition of the portfolio value of liquidity providers
for the CFMM is the total present market value of reserves. If asset β has some market value
S(t) at time t, then the portfolio value is given by

Rα(t) + S(t)Rβ,

and the portfolio weight (of coin β) of the liquidity providers is defined as

wt =
Rβ(t)S(t)

Rα(t) +Rβ(t)S(t)
.

In other words, wt is the total proportion of wealth allocated to asset β with respect to the
complete porfolio.

Price process. We will compute the optimal fees when the price of the risky asset follows

S(t+ h) = S(t)
(
(µ− r)h+ σεt

√
h
)
, (6)

where εt ∼ {±1} is uniform and µ, r and σ are constants that represent the growth rate, dis-
counting rate, and volatility, respectively. (We will later take h ↓ 0 such that S(t) converges
to a geometric Brownian motion.)

When no adjustments occur by the arbitrageur, there is no trade performed and so
Rα(t) = Rα and Rβ(t) = Rβ are constant from t to t + h. So, the corresponding dynamics
of wt can be derived in the limit of small h:

wt+h − wt = wt(1− wt)(µ− r − wtσ
2)h+ wt(1− wt)σεt

√
h+O(h3/2). (7)

Through a discrete approximation, we prove the boundary conditions (5) for these weight
dynamics in Appendix §B.
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Penalty function. We assume the penalty function is given by

φ(wt) =
1

2
λσ2(wt − w∗)2 (8)

for some constant w∗. This functional form is used in [15] and conforms with the assumption
that LP has mean-variance preferences over rates of return to wealth with risk aversion
parameter λ. In particular, we note that this expression generalizes the setting considered
in [18] where one seeks to maximize the growth rate of LP wealth. To see this, note the
expected logarithm of wealth satisfies

1

T
E[ln(W (T )/W (0)] =

1

T

* T

0

(ws(µ− r)− 1

2
σ2ws)ds.

Through a standard procedure, this expectation can be shown to be maximized by fixing
w∗ = µ−r

σ2 . Substituting this value when taking the difference between the growth rate at w∗

and w,

[(µ− r)w∗ − 1

2
σ2(w∗)2]dt− [(µ− r)wt −

1

2
σ2w2

t ]dt =
1

2
σ2(w − w∗)2dt,

which (8) for the special case of λ = 1.

Approximation. We consider the case when wt ≈ w∗ which will provide a close approxi-
mation for small fees. When this is true, we can approximate (7) by

wt+h − wt = wtah+ wtbdεt
√
h,

where
a = (1− w∗)(µ− r − w∗σ2), b = (1− w∗)σ.

The equation in (4) simplifies to Euler-Cauchy form and has an explicit solution given in [15],

J(w, γ1, γ2) =
1

2
λσ2

&
w2

r − 2a− b2
− 2ww∗

r − a
+

(w∗)2

r

'
+ C1w

z1 + C2w
z2 . (9)

where

z1 =

b2

2
− a+

+
(a− b2

2
)2 + 2b2r

b2
, z2 =

b2

2
− a−

+
(a− b2

2
)2 + 2b2r

b2

Determining optimal values. Note that (4) and (5) will hold for all values of γ1 and γ2.
For the optimal values, we show in §C that

J11 (wU , γ1, γ2) = J11 (wD, γ1, γ2) = 0. (10)

Using the conditions in (5) and (10), we will determine the values of the coefficients C1, C2 in
(9) as well as the optimal values for γ1 and γ2. One can check that the (numerical) maxima
happen when γ1 and γ2 both approach 1 (zero fee). However, the system of equations has no
solution as C1 and C2 are undefined for γ1 = γ2 = 1. Taking the limit as (γ1, γ2) → (1−, 1−),
one can show that J(w, γ1, γ2) approaches zero, implying that no cost is incurred relative to
the optimal strategy.
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Figure 1: Cost function for J(w!) when the LP seeks to minimize the penalty on the rate
of wealth growth (λ = 1) and fees are equal regardless of trading direction γ = γ1 = γ2. We
plot different mean-variance pairs that each satisfy w! = 1

2
. Higher volatility increases the

relative cost incurred for higher values of the fee, for every choice J(w!) is brought close to
zero as the fee approaches zero (while the function is not continuous at γ = 1)

3 Conclusion

Fees are a critical component of LP value in CFMMs. Fees offset the cost of arbitrage,
but also reduce the extent of rebalancing performed. We formalize this trade-off through a
control-inspired approach that allows us to explicitly derive a solution for LP value for given
fee choices. This solution also allows us to make the optimal choice of fees for maximizing
value for the LP. In the example where the LP faces a quadratic tracking error for asset prices
following geometric Brownian motion, we show that costs are minimized as fees approach
zero. Our result applies to all G3Ms and allows one to derive results for general LP objective
functions when the underlying asset price dynamics are governed by a continuous process.
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A G3M arbitrage results

When the arbitrageur adds reserves of the risky asset, we have the following constant geo-
metric mean formula,

(Rα −∆α)
1−θ(Rβ + γ1∆β)

θ = R1−θ
α Rθ

β.

Solving for ∆β,

∆β =
1

γ1
Rβ

,-
Rα

Rα −∆α

. 1−θ
θ

− 1

/

The aribtrageur’s problem is therefore

maximize ∆α − S(t)
1

γ1
Rβ

,-
Rα

Rα −∆α

. 1−θ
θ

− 1

/

subject to ∆α ≥ 0

(11)

As in [4], we note that the unconstrained maxima are those where the derivative of (11) is
zero. This happens when

∆α = Rα −
-
1− θ

γ1θ
S(t)RβR

1−θ
θ

α

.θ

. (12)

This implies

∆β =

-
θ

1− θ

Rα

S(t)

.1−θ -
Rβ

γ1

.θ

− Rβ

γ1
.

Substituting this back into the objective of (11) and simplifying, we get that the total
arbitrage profit for the trader

Rα − 1

θθ(1− θ)1−θ
R1−θ

α

-
S(t)Rβ

γ1

.θ

+
S(t)Rβ

γ1
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Scaling to total LP wealth S(t)Rβ +Rα,

Cd = (1− w(t))− 1

θθ(1− θ)1−θ

-
w(t)

γ1

.θ

(1− w(t))1−θ +
w(t)

γ1
, (13)

where w(t) =
S(t)Rβ

S(t)Rβ+Rα
, the fraction of LP wealth in the risky asset prior to rebalancing.

No-arbitrage requires that ∆ ≤ 0 in (12), which implies

w(t) ≥ γ1θ

1− θ + γ1θ
= wD

After this adjustment, the quantities are updated to Rα /→ Rα − ∆α and Rβ /→ Rβ + ∆β.
The weight after the adjustment is given by

wd(t) =
(Rβ +∆β)S

(Rβ +∆β)S +Rα −∆α

Which we can rewrite as

wd(t) =
1 + γθ

1

0
1−θ
θ

w(t)
1−w(t)

11−θ

(1− γ−1
1 )

1
θ
+ γθ

1

0
1−θ
θ

w(t)
1−w(t)

11−θ

(1− γ−1
1 )

(14)

When adding units of the numéraire in exchange for the risky asset, the constant geometric
mean gives

(Rα + γ2∆α)
1−θ(Rβ −∆β)

θ = R1−θ
α Rθ

β.

Through a similar procedure, it is possible to show

Cu =
1

γ2
(1− w(t))− 1

θθ(1− θ)1−θ

-
1

γ2
(1− w(t))

.1−θ

w(t)θ + w(t), (15)

and

w(t) ≤ θ

γ2(1− θ) + θ
.

The weight after the adjustment is given by

wu(t) =
1

1
θ
+
2
γ2

1−θ
θ

31−θ
0

1−w(t)
w(t)

1θ

(1− γ−1
2 )

.

B Proof of boundary conditions

We proceed by a discrete approximation of the problem and derive the associated boundary
conditions at the limit. Analogous to [9, 8], we divide time into discrete intervals of length

12



τ and state into steps of size ξ. In what follows, we will approximate the weight variable in
a slightly different way, but will still recover (2) at the limit; here, for each i, we will have

wi+1 − wi = ξ.

We approximate the unadjusted weight process with a random walk. Starting from wi, the
next step after τ units of time have passed will be wi−1, with probability p, and wi+1, with
probability q = 1− p. If we suppose these probabilities satisfy

awiτ = qξ + p(−ξ),

then this implies

p =
1

2
(1− awiτ/ξ), q =

1

2
(1 + awiτ/ξ).

The variance is given by

b2w2
i τ = q(ξ − awiτ)

2 + p(ξ + awiτ)
2 = ξ2 − a2w2

i τ
2.

Keeping only the leading term, b2w2
i τ = ξ2, and taking the limit as τ and ξ tend to zero, we

recover the process in (2). From §A, we have the boundaries of the no-arbitrage interval,

γ1w
∗

1− w∗ + γ1w∗ = wD,
w∗

γ2(1− w∗) + w∗ = wU .

The random walk proceeds unadjusted on the states i = D+1, .., U−1. If the process is at D
and takes a step to the right, again no arbitrage adjustment occurs. If, however, the process
moves to D − 1, then arbitrage instantaneously adjusts the weight to wd in (14). At i = D
the next step will be wD+1, with probability p, and wd with probability q = 1− p. Similarly,
at the upper boundary, we will have wU−1 with probability p, and wu, with probability
q = 1− p. Therefore, at the boundary point wU , we have

J(wU) = f(wU)τ + e−rτpJ(wU−1) + e−rτqJ(wu(ξ))− qCu(ξ),

where

Cu(ξ) =
1

γ2
(1− wU − ξ)− (1− wU − ξ)1−w∗

γ2(w∗)w∗(1− w∗)1−w∗ (wU + ξ)w
∗
+ wU + ξ, (16)

and

wu(ξ) =
1

1
w∗ +

2
γ2

1−w∗

w∗

31−w∗ 0
1−WU−ξ
WU+ξ

1w∗

(1− γ−1
2 )

.

Rearranging terms and multiplying by erτ

erτJ(wU)− pJ(wU−1)− qJ(wu(ξ)) = erτf(wU)τ − erτqCu(ξ)).
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Expanding on the right side and noting that τ is o(ξ),

τ [1 + rτ + o(τ)]f(wU)−
1

2
(1 + aξ/(wUb

2))[1 + rτ + o(τ)]Cu(ξ))

= −1

2
(1 + aξ/(wUb

2))Cu(ξ)) + o(ξ).

Expanding on the left side,

[1 + rτ + o(τ)]J(wU)− p[J(wU)− J1(wU)ξ + o(ξ)] + qJ(wu(ξ))

= q[J(wU)− J(wu(ξ))] + pJ1(wU) + o(ξ)

=
1

2
(1 + aξ/(wUb

2))[J(wU)− J(wu(ξ))] +
1

2
(1− aξ/(wUb

2))J1(wU)ξ + o(ξ)

=
1

2

-
[J(wU)− J(wu(ξ))] +

aξ

wUb2
[J(wU)− J(wu(ξ))] + J1(wU)ξ

.
+ o(ξ).

Next, we divide both sides by ξ and take the limit as ξ tends to zero. From (16), one can
check that

CU(ξ) =
(γ2(1− w!)− w)3

2γ2
2(1− w!)w!

ξ2 + o(ξ2)

Therefore, the right-hand side is zero. For the left-hand side, noting that wu(0) = wU we
have

lim
ξ→0

1

2

&
[J(wU)− J(wu(ξ))] +

aξ

wUb2
[J(wU)− J(wu(ξ))] + J1(wU)ξ + o(ξ)

'

= lim
ξ→0

1

2

&
J(wU)− J(wu(ξ))

ξ
+ J1(wU)

'

By the Mean Value Theorem, there exists ζ ∈ (wU , wu(ξ)) such that

lim
ξ→0

1

2

&
J(wU)− J(wu(ξ))

ξ
+ J1(wU)

'
= lim

ξ→0

1

2

&
J1(ζ)[wU − wu(ξ))]

ξ
+ J1(wU)

'

= lim
ξ→0

1

2

&
−J1(ζ)[w

′
u(0)ξ + o(ξ))]

ξ
+

1

2
J1(wU)

'
=

1

2
J1(wU)(1− w′

u(0))

=
γ2(1− w∗)− w∗

2γ2
J1(wU)

Noting γ2(1−w∗)−w∗

2γ2
is non-zero and finite for 0 < γ2 ≤ 1 completes the proof of (5). For

γ2 = 0, the boundary condition does not apply as no adjustment occurs and this holds for
all w > wD = 0. The proof for the lower boundary is similar.

C Optimality conditions

Substituting the boundary condition (5) into the general solution (9) we have
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J1(wU , γ1, γ2) =
1

2
λσ2

&
2wU

r − 2a− b2
− 2w∗

r − a

'
+ C1z1w

z1−1
U + C2z2w

z2−1
U .

Taking the derivative with respect to γ1

J12(wU , γ1, γ2) =
∂C1

∂γ1
z1w

z1−1
U +

∂C2

∂γ1
z2w

z2−1
U = 0.

We note that for b ∕= 0 and r > 0, z1 and z2 will have opposite signs. Since wz1−q and wz2−q

are positive, we conclude that ∂C1

∂γ1
and ∂C2

∂γ1
have the same sign. So,

J2(w, γ1, γ2) =
∂C1

∂γ1
wz1 +

∂C2

∂γ1
wz2 .

Again wz1 and wz2 are positive and the derivatives have the same sign. This implies that
changing γ1 either increases or decreases the total cost for all values of w. The first-order
condition for optimality is therefore J2(w, γ1, γ2) = 0. We conclude that

∂C1

∂γ2
=

∂C2

∂γ2
= 0.

Taking the derivative of (5) with respect to γ1 gives

J12(wD, γ1, γ2) = 0

∂C1

∂γ1
z1w

z1−1
D +

∂C2

∂γ1
z2w

z2−1
D +

w∗(1− w∗)

(1 + (γ1 − 1)w∗)2
[C1z1(z1 − 1)wz1−2

D 2C2z2(z2 − 1)wz2−2
D +

λσ2

r − 2a− b2
] = 0

w∗(1− w∗)

(1 + (γ1 − 1)w∗)2
J11(wD, γ1, γ2) = 0,

which gives the desired result for the second derivative at the lower boundary. The proof is
identical for the upper boundary.
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